Seymour Benzer

0
34

Seymour Benzer : biography

October 15, 1921 – November 30, 2007

Research accomplishments

Benzer used forward genetics to investigate the genetic basis of various behaviors such as phototaxis, circadian rhythms, and learning by inducing mutations in a Drosophila population and then screening individuals for altered phenotypes of interest. To better identify mutants, Benzer developed novel apparatuses such as the countercurrent device, which was designed to separate flies according to the magnitude and direction of their phototactic response. Benzer identified mutants for a wide variety of characteristics: vision (nonphototactic, negative phototactic, and eyes absent), locomotion (sluggish, uncoordinated), stress sensitivity (Shaker, freaked-out), sexual function (savoir-faire, fruitless), nerve and muscle function (photoreceptor degeneration, drop-dead), and learning and memory (rutabaga, dunce).

Benzer and student Ron Konopka discovered the first circadian rhythm mutants. Three distinct mutant types—arrhythmic, shortened period, and lengthened period—were identified. These mutations all involved the same functional gene on the X chromosome and influenced the eclosion rhythm of the population as well as rhythms in individual flies’ locomotor activity. To monitor Drosophila locomotor activity, Benzer and postdoctoral researcher, Yoshiki Hotta, designed a system using infrared light and solar cells. All three mutations were mapped to the X chromosome, zero centimorgans away from each other, indicating that the mutant phenotypes corresponded to alleles of the same gene, which Konopka named period. This was the first of several seminal studies of single genes affecting behavior, studies that have been replicated in other animal models and are now the basis for the growing field of molecular biology of behavior. In 1992 Benzer, working with Michael Rosbash, furthered this work by showing that the PER protein, which period codes for, is predominantly located in the nucleus. The work with Period mutants was catalytic in the study of circadian rhythms and served to propel the field forward.

Benzer was at the forefront of the study of neurodegeneration in fruit flies, modeling human diseases and attempting to suppress them. He also contributed to the field of aging biology, looking for mutants with altered longevity and trying to dissect the mechanisms by which an organism can escape the inevitable functional downfall and its associated diseases. In 1998, Benzer and his colleagues Yi-Jyun Lin and Laurent Seroude published findings of a long-life mutant in Drosophila, then named Methuselah. The mutant gene coded for a previously unknown member of the GPCR family. By testing against temperature stress, it is thought that these mutants have an increased ability to respond to stress and thus to live longer. One of Benzer’s final research projects was on dietary restriction and longevity research. A paper was published, in ”Cell”, on the longevity effect of 4E-BP, a translational repressor, following dietary restriction. Although the research was done before his death, the paper was published afterwards and dedicated to his memory.

Cancer research

In 1978, Dotty was in the hospital with breast cancer, and Seymour’s friend, colleague, and mentor Max Delbrück was diagnosed with cancer. Consequently, Seymour Benzer took interest in cancer biology and attended several conferences on breast cancer. Benzer later remarried with Carol Miller, a neuropathologist. Together, in the early 1980s, they used antibody staining techniques to find nearly identical genes between flies and humans.

Biography

Early life and education

Benzer was born in Bensonhurst, Brooklyn, to Meyer B. and Eva Naidorf, both Jews from Poland . He had two older sisters, and his parents favored him as the only boy. One of Benzer’s earliest scientific experiences was dissecting frogs he had caught as a boy. In an interview at Caltech, Benzer also remembered receiving a microscope for his 13th birthday, “and that opened up the whole world.” The book "Arrowsmith" by Sinclair Lewis heavily influenced the young Benzer, and he even imitated the handwriting of Max Gottlieb, a scientist character in the novel. Benzer graduated from high school at 15 years old.

In 1938 he enrolled at Brooklyn College where he majored in physics. Benzer then moved on to Purdue University to earn his Ph.D. in solid state physics. While there he was recruited for a secret military project to develop improved radar. He performed research that led to the development of stable germanium rectifiers and discovered a germanium crystal able to be used at high voltages, among the scientific work that led to the first transistor.

Personal life

At Brooklyn College, as a sixteen-year-old freshman, Benzer met Dorothy Vlosky (nicknamed Dotty), a twenty-one-year-old nurse. He later married her in New York City in 1942. They had two daughters, Barbie (Barbara) and Martha Jane.

Benzer died of a stroke at the Huntington Hospital in Pasadena, California.

Honors and awards

  • Fellow of the American Academy of Arts and Sciences (1959)
  • Gairdner Foundation International Award (1964)
  • Albert Lasker Award for Basic Medical Research (1971)
  • Louisa Gross Horwitz Prize from Columbia University (1976),
  • Harvey Prize (1977)
  • National Medal of Science (1982)
  • Thomas Hunt Morgan Medal (1986)
  • Wolf Prize in Medicine (1991)
  • Crafoord Prize (1993)
  • International Prize for Biology (2000)
  • NAS Award in the Neurosciences from the National Academy of Sciences (2001)
  • March of Dimes Prize in Developmental Biology (2003)
  • Gairdner Foundation International Award (2004) (second award)
  • Bower Award and Prize for Achievement in Science (2004)
  • Albany Medical Center Prize (2006)

He was a member of the French Academy of Sciences, the U.S. National Academy of Sciences, the American Philosophical Society and the Royal Society.