# John von Neumann : biography

For example, the uncertainty principle, according to which the determination of the position of a particle prevents the determination of its momentum and vice versa, is translated into the *non-commutativity* of the two corresponding operators. This new mathematical formulation included as special cases the formulations of both Heisenberg and Schrödinger.

Von Neumann’s abstract treatment permitted him also to confront the foundational issue of determinism vs. non-determinism and in the book he presented a proof according to which quantum mechanics could not possibly be derived by statistical approximation from a deterministic theory of the type used in classical mechanics. In 1966, a paper by John Bell was published, claiming that this proof contained a conceptual error and was therefore invalid (see the article on John Stewart Bell for more information). However, in 2010, Jeffrey Bub published an argument that Bell misconstrued von Neumann’s proof, and that it is actually not flawed, after all. Regardless, the proof inaugurated a line of research that ultimately led, through the work of Bell in 1964 on Bell’s theorem, and the experiments of Alain Aspect in 1982, to the demonstration that quantum physics requires a *notion of reality* substantially different from that of classical physics.

In a chapter of *The Mathematical Foundations of Quantum Mechanics*, von Neumann deeply analyzed the so-called measurement problem. He concluded that the entire physical universe could be made subject to the universal wave function. Since something "outside the calculation" was needed to collapse the wave function, von Neumann concluded that the collapse was caused by the consciousness of the experimenter (although this view was accepted by Eugene Wigner, it never gained acceptance amongst the majority of physicists).von Neumann, John. (1932/1955). *Mathematical Foundations of Quantum Mechanics*. Princeton: Princeton University Press. Translated by Robert T. Beyer.

Though theories of quantum mechanics continue to evolve to this day, there is a basic framework for the mathematical formalism of problems in quantum mechanics which underlies the majority of approaches and can be traced back to the mathematical formalisms and techniques first used by von Neumann. In other words, discussions about interpretation of the theory, and extensions to it, are now mostly conducted on the basis of shared assumptions about the mathematical foundations.

### Quantum logic

In a famous paper of 1936, the first work ever to introduce quantum logics,Dov M. Gabbay, John Woods, , Elsevier, 2007, pp. 205–217 ISBN 0444516239. von Neumann first proved that quantum mechanics requires a propositional calculus substantially different from all classical logics and rigorously isolated a new algebraic structure for quantum logics. The concept of creating a propositional calculus for quantum logic was first outlined in a short section in von Neumann’s 1932 work. But in 1936, the need for the new propositional calculus was demonstrated through several proofs. For example, photons cannot pass through two successive filters which are polarized perpendicularly (e.g. one horizontally and the other vertically), and therefore, a fortiori, it cannot pass if a third filter polarized diagonally is added to the other two, either before or after them in the succession. But if the third filter is added *in between* the other two, the photons will indeed pass through. And this experimental fact is translatable into logic as the *non-commutativity* of conjunction (Aland B)ne (Bland A). It was also demonstrated that the laws of distribution of classical logic, Plor(Qland R)=(Plor Q)land(Plor R) and Pland (Qlor R)=(Pland Q)lor(Pland R), are not valid for quantum theory. The reason for this is that a quantum disjunction, unlike the case for classical disjunction, can be true even when both of the disjuncts are false and this is, in turn, attributable to the fact that it is frequently the case, in quantum mechanics, that a pair of alternatives are semantically determinate, while each of its members are necessarily indeterminate. This latter property can be illustrated by a simple example. Suppose we are dealing with particles (such as electrons) of semi-integral spin (angular momentum) for which there are only two possible values: positive or negative. Then, a principle of indetermination establishes that the spin, relative to two different directions (e.g. *x* and *y*) results in a pair of incompatible quantities. Suppose that the state **ɸ** of a certain electron verifies the proposition "the spin of the electron in the *x* direction is positive." By the principle of indeterminacy, the value of the spin in the direction *y* will be completely indeterminate for **ɸ**. Hence, **ɸ** can verify neither the proposition "the spin in the direction of *y* is positive" nor the proposition "the spin in the direction of *y* is negative." Nevertheless, the disjunction of the propositions "the spin in the direction of *y* is positive or the spin in the direction of *y* is negative" must be true for **ɸ**. In the case of distribution, it is therefore possible to have a situation in which *A land (Blor C)= Aland 1 = A*, while (Aland B)lor (Aland C)=0lor 0=0.