Irving Langmuir


Irving Langmuir : biography

31 January 1881 – 16 August 1957

His assistant in vacuum tube research was his cousin William Comings White.

In 1917, he published a paper on the chemistry of oil films that later became the basis for the award of the 1932 Nobel Prize in chemistry. Langmuir theorized that oils consisting of an aliphatic chain with a hydrophilic end group (perhaps an alcohol or acid) were oriented as a film one molecule thick upon the surface of water, with the hydrophilic group down in the water and the hydrophobic chains clumped together on the surface. The thickness of the film could be easily determined from the known volume and area of the oil, which allowed investigation of the molecular configuration before spectroscopic techniques were available.Coffey, Cathedrals of Science: 128-131

As he continued to study filaments in vacuum and different gas environments, he began to study the emission of charged particles from hot filaments (thermionic emission). He was one of the first scientists to work with plasmas and was the first to call these ionized gases by that name, because they reminded him of blood plasma. – Coalition for Plasma Science Langmuir and Tonks discovered electron density waves in plasmas that are now known as Langmuir waves.

He introduced the concept of electron temperature and in 1924 invented the diagnostic method for measuring both temperature and density with an electrostatic probe, now called a Langmuir probe and commonly used in plasma physics. The current of a biased probe tip is measured as a function of bias voltage to determine the local plasma temperature and density. He also discovered atomic hydrogen, which he put to use by inventing the atomic hydrogen welding process; the first plasma weld ever made. Plasma welding has since been developed into gas tungsten arc welding.

Later years

Following World War I Langmuir contributed to atomic theory and the understanding of atomic structure by defining the modern concept of valence shells and isotopes.

Langmuir was president of the Institute of Radio Engineers in 1923.

Based on his work at General Electric, Jonh B. Taylor developed a detector ionizing beams of alkali metals, called nowadays Langmuir-Taylor detector.

He joined Katharine B. Blodgett to study thin films and surface adsorption. They introduced the concept of a monolayer (a layer of material one molecule thick) and the two-dimensional physics which describe such a surface. In 1932 he received the Nobel Prize in Chemistry "for his discoveries and investigations in surface chemistry."

In 1938, Langmuir’s scientific interests began to turn to atmospheric science and meteorology. One of his first ventures, although tangentially related, was a refutation of the claim of entomologist Charles H. T. Townsend that the deer botfly flew at speeds in excess of 800 miles per hour. Langmuir estimated the fly’s true speed at 25 miles per hour.

After observing windrows of drifting seaweed in the Sargasso Sea he discovered a wind-driven surface circulation in the sea. It is now called the Langmuir circulation.

Langmuir’s house in Schenectady

During World War II, Langmuir worked on improving naval sonar for submarine detection, and later to develop protective smoke screens and methods for deicing aircraft wings. This research led him to theorize that the introduction of dry ice and iodide into a sufficiently moist cloud of low temperature could induce precipitation (cloud seeding); though in frequent practice, particularly in Australia and the People’s Republic of China, the efficiency of this technique remains controversial today.

In 1953 Langmuir coined the term "pathological science", describing research conducted with accordance to the scientific method, but tainted by unconscious bias or subjective effects. This is in contrast to pseudoscience, which has no pretense of following the scientific method. In his original speech, he presented ESP and flying saucers as examples of pathological science; since then, the label has been applied to polywater and cold fusion.

His house in Schenectady, was designated a National Historic Landmark in 1976.

Personal life

Langmuir was married to Marion Mersereau in 1912 with whom he adopted two children: Kenneth and Barbara. After a short illness, he died in Woods Hole, Massachusetts from a heart attack in 1957. His obituary ran on the front page of The New York Times.

On his religious views, Langmuir was an agnostic.

In fiction

According to author Kurt Vonnegut, Langmuir was the inspiration for his fictional scientist Dr. Felix Hoenikker in the novel Cat’s Cradle. The character’s invention of ice-nine eventually destroyed the world. Langmuir had worked with Vonnegut’s brother, Bernard Vonnegut., NY Times, 27 April 1997.


  • Fellow of the American Academy of Arts and Sciences (1918)
  • Perkin Medal (1928)
  • Nobel Prize in Chemistry (1932)
  • Franklin Medal (1934)
  • Faraday Medal (1944)
  • John J. Carty Award of the National Academy of Sciences (1950)
  • Mount Langmuir (elevation 8022 ft / 2445m ) in Alaska is named after him (Chugach National Forest, Copper River, AK)
  • Langmuir College, a residential college at Stony Brook University in H-Quad, named for him in 1970
  • grandson, Roger R Summerhayes, directed/wrote/produced/edited a 57 minute documentary in 1999 called Langmuir’s World