Hipparchus

47

Hipparchus : biography

190 BC –

Astronomical instruments and astrometry

Hipparchus and his predecessors used various instruments for astronomical calculations and observations, such as the gnomon, the astrolabe, and the armillary sphere.

Hipparchus is credited with the invention or improvement of several astronomical instruments, which were used for a long time for naked-eye observations. According to Synesius of Ptolemais (4th century) he made the first astrolabion: this may have been an armillary sphere (which Ptolemy however says he constructed, in Almagest V.1); or the predecessor of the planar instrument called astrolabe (also mentioned by Theon of Alexandria). With an astrolabe Hipparchus was the first to be able to measure the geographical latitude and time by observing stars. Previously this was done at daytime by measuring the shadow cast by a gnomon, or with the portable instrument known as a scaphe.

[[Equatorial ring of Hipparchus’ time.]]

Ptolemy mentions (Almagest V.14) that he used a similar instrument as Hipparchus, called dioptra, to measure the apparent diameter of the Sun and Moon. Pappus of Alexandria described it (in his commentary on the Almagest of that chapter), as did Proclus (Hypotyposis IV). It was a 4-foot rod with a scale, a sighting hole at one end, and a wedge that could be moved along the rod to exactly obscure the disk of Sun or Moon.

Hipparchus also observed solar equinoxes, which may be done with an equatorial ring: its shadow falls on itself when the Sun is on the equator (i.e., in one of the equinoctial points on the ecliptic), but the shadow falls above or below the opposite side of the ring when the Sun is south or north of the equator. Ptolemy quotes (in Almagest III.1 (H195)) a description by Hipparchus of an equatorial ring in Alexandria; a little further he describes two such instruments present in Alexandria in his own time.

Hipparchus applied his knowledge of spherical angles to the problem of denoting locations on the Earth’s surface. Before him a grid system had been used by Dicaearchus of Messana, but Hipparchus was the first to apply mathematical rigor to the determination of the latitude and longitude of places on the Earth. Hipparchus wrote a critique in three books on the work of the geographer Eratosthenes of Cyrene (3rd century BC), called Pròs tèn ‘Eratosthénous geografían ("Against the Geography of Eratosthenes"). It is known to us from Strabo of Amaseia, who in his turn criticised Hipparchus in his own Geografia. Hipparchus apparently made many detailed corrections to the locations and distances mentioned by Eratosthenes. It seems he did not introduce many improvements in methods, but he did propose a means to determine the geographical longitudes of different cities at lunar eclipses (Strabo Geografia 1 January 2012). A lunar eclipse is visible simultaneously on half of the Earth, and the difference in longitude between places can be computed from the difference in local time when the eclipse is observed. His approach would give accurate results if it were correctly carried out but the limitations of timekeeping accuracy in his era made this method impractical.

Editions and translations

  • Berger H. .
  • Dicks D.R. The Geographical Fragments of Hipparchus. Edited with an Introduction and Commentary. London: Athlon Press, 1960. Pp. xi + 215.
  • Manitius K. In Arati et Eudoxi Phaenomena commentariorum libri tres. Leipzig: B. G. Teubner, 1894. 376 S.

Notes

Babylonian sources

Earlier Greek astronomers and mathematicians were influenced by Babylonian astronomy to some extent, for instance the period relations of the Metonic cycle and Saros cycle may have come from Babylonian sources (see "Babylonian astronomical diaries"). Hipparchus seems to have been the first to exploit Babylonian astronomical knowledge and techniques systematically.For more information see G. J. Toomer, "Hipparchus and Babylonian astronomy." Except for Timocharis and Aristillus, he was the first Greek known to divide the circle in 360 degrees of 60 arc minutes (Eratosthenes before him used a simpler sexagesimal system dividing a circle into 60 parts). He also used the Babylonian unit pechus ("cubit") of about 2° or 2.5°.