173

# Hipparchus : biography

190 BC –

### Distance, parallax, size of the Moon and Sun

Hipparchus also undertook to find the distances and sizes of the Sun and the Moon. He published his results in a work of two books called Perí megethōn kaí apostēmátōn ("On Sizes and Distances") by Pappus in his commentary on the Almagest V.11; Theon of Smyrna (2nd century) mentions the work with the addition "of the Sun and Moon".

Hipparchus measured the apparent diameters of the Sun and Moon with his diopter. Like others before and after him, he found that the Moon’s size varies as it moves on its (eccentric) orbit, but he found no perceptible variation in the apparent diameter of the Sun. He found that at the mean distance of the Moon, the Sun and Moon had the same apparent diameter; at that distance, the Moon’s diameter fits 650 times into the circle, i.e., the mean apparent diameters are 360/650 = 0°33’14".

Like others before and after him, he also noticed that the Moon has a noticeable parallax, i.e., that it appears displaced from its calculated position (compared to the Sun or stars), and the difference is greater when closer to the horizon. He knew that this is because in the then-current models the Moon circles the center of the Earth, but the observer is at the surface—the Moon, Earth and observer form a triangle with a sharp angle that changes all the time. From the size of this parallax, the distance of the Moon as measured in Earth radii can be determined. For the Sun however, there was no observable parallax (we now know that it is about 8.8", several times smaller than the resolution of the unaided eye).

In the first book, Hipparchus assumes that the parallax of the Sun is 0, as if it is at infinite distance. He then analyzed a solar eclipse, which Toomer (against the opinion of over a century of astronomers) presumes to be the eclipse of 14 March 190 BC. It was total in the region of the Hellespont (and in his birthplace, Nicaea); at the time Toomer proposes the Romans were preparing for war with Antiochus III in the area, and the eclipse is mentioned by Livy in his Ab Urbe Condita VIII.2. It was also observed in Alexandria, where the Sun was reported to be obscured 4/5ths by the Moon. Alexandria and Nicaea are on the same meridian. Alexandria is at about 31° North, and the region of the Hellespont about 40° North. (It has been contended that authors like Strabo and Ptolemy had fairly decent values for these geographical positions, so Hipparchus must have known them too. However, Strabo’s Hipparchus dependent latitudes for this region are at least 1° too high, and Ptolemy appears to copy them, placing Byzantium 2° high in latitude.) Hipparchus could draw a triangle formed by the two places and the Moon, and from simple geometry was able to establish a distance of the Moon, expressed in Earth radii. Because the eclipse occurred in the morning, the Moon was not in the meridian, and it has been proposed that as a consequence the distance found by Hipparchus was a lower limit. In any case, according to Pappus, Hipparchus found that the least distance is 71 (from this eclipse), and the greatest 81 Earth radii.

In the second book, Hipparchus starts from the opposite extreme assumption: he assigns a (minimum) distance to the Sun of 490 Earth radii. This would correspond to a parallax of 7′, which is apparently the greatest parallax that Hipparchus thought would not be noticed (for comparison: the typical resolution of the human eye is about 2′; Tycho Brahe made naked eye observation with an accuracy down to 1′). In this case, the shadow of the Earth is a cone rather than a cylinder as under the first assumption. Hipparchus observed (at lunar eclipses) that at the mean distance of the Moon, the diameter of the shadow cone is 2+½ lunar diameters. That apparent diameter is, as he had observed, 360/650 degrees. With these values and simple geometry, Hipparchus could determine the mean distance; because it was computed for a minimum distance of the Sun, it is the maximum mean distance possible for the Moon. With his value for the eccentricity of the orbit, he could compute the least and greatest distances of the Moon too. According to Pappus, he found a least distance of 62, a mean of 67+1/3, and consequently a greatest distance of 72+2/3 Earth radii. With this method, as the parallax of the Sun decreases (i.e., its distance increases), the minimum limit for the mean distance is 59 Earth radii – exactly the mean distance that Ptolemy later derived.