Hipparchus : biography

190 BC –

In any case the work started by Hipparchus has had a lasting heritage, and was much later updated by Al Sufi (964) and Copernicus (1543). Ulugh Beg reobserved all the Hipparchus stars he could see from Samarkand in 1437 to about the same accuracy as Hipparchus’s. The catalog was superseded only in the late 16th century by Brahe and Wilhelm IV of Kassel via superior ruled instruments and spherical trigonometry, which improved accuracy by an order of magnitude even before the invention of the telescope. Hipparchus is considered the greatest observational astronomer from classical antiquity until Brahe.Benson Bobrick, "The Fated Sky", Simon & Schuster, 2005, p 151

Stellar magnitude

Hipparchus ranked stars in six magnitude classes according to their brightness: he assigned the value of one to the twenty brightest stars, to fainter ones a value of two, and so forth to the stars with a class of six, which can be barely seen with the naked eye. That system, improved, is still used today.

Named after Hipparchus

The rather cumbersome formal name for the ESA’s Hipparcos Space Astrometry Mission was High Precision Parallax Collecting Satellite; it was deliberately named in this way to give an acronym, HiPParCoS, that echoed and commemorated the name of Hipparchus. The lunar crater Hipparchus and the asteroid 4000 Hipparchus are more directly named after him.

Lunar and solar theory

Motion of the Moon

Hipparchus also studied the motion of the Moon and confirmed the accurate values for two periods of its motion that Chaldean astronomers certainly possessed before him, whatever their ultimate origin. The traditional value (from Babylonian System B) for the mean synodic month is 29 days;31,50,8,20 (sexagesimal) = 29.5305941… days. Expressed as 29 days + 12 hours + 793/1080 hours this value has been used later in the Hebrew calendar (possibly from Babylonian sources). The Chaldeans also knew that 251 synodic months = 269 anomalistic months. Hipparchus used a multiple of this period by a factor of 17, because that interval is also an eclipse period. The Moon also is close to an integer number of years (4267 moons : 4573 anomalistic periods : 4630.53 nodal periods : 4611.98 lunar orbits : 344.996 years : 344.982 solar orbits : 126,007.003 days : 126,351.985 rotations). The 345-year eclipses reoccur with almost identical time of day, elevation, and celestial position.

Hipparchus could confirm his computations by comparing eclipses from his own time (presumably 27 January 141 BC and 26 November 139 BC according to [Toomer 1980]), with eclipses from Babylonian records 345 years earlier (Almagest IV.2; [A.Jones, 2001]). Already al-Biruni (Qanun VII.2.II) and Copernicus (de revolutionibus IV.4) noted that the period of 4,267 moons is actually about 5 minutes longer than the value for the eclipse period that Ptolemy attributes to Hipparchus. However, the timing methods of the Babylonians had an error of no less than 8 minutes.Stephenson & Fatoohi 1993; Steele et al. 1997 Modern scholars agree that Hipparchus rounded the eclipse period to the nearest hour, and used it to confirm the validity of the traditional values, rather than try to derive an improved value from his own observations. From modern ephemerides Chapront et al. 2002 and taking account of the change in the length of the day (see ΔT) we estimate that the error in the assumed length of the synodic month was less than 0.2 seconds in the 4th century BC and less than 0.1 seconds in Hipparchus’ time.

Orbit of the Moon

It had been known for a long time that the motion of the Moon is not uniform: its speed varies. This is called its anomaly, and it repeats with its own period; the anomalistic month. The Chaldeans took account of this arithmetically, and used a table giving the daily motion of the Moon according to the date within a long period. The Greeks however preferred to think in geometrical models of the sky. Apollonius of Perga had at the end of the 3rd century BC proposed two models for lunar and planetary motion: