68

# Hipparchus : biography

190 BC –

Hipparchus could construct his chord table using the Pythagorean theorem and a theorem known to Archimedes. He also might have developed and used the theorem in plane geometry called Ptolemy’s theorem, because it was proved by Ptolemy in his Almagest (I.10) (later elaborated on by Carnot).

Hipparchus was the first to show that the stereographic projection is conformal, and that it transforms circles on the sphere that do not pass through the center of projection to circles on the plane. This was the basis for the astrolabe.

Besides geometry, Hipparchus also used arithmetic techniques developed by the Chaldeans. He was one of the first Greek mathematicians to do this, and in this way expanded the techniques available to astronomers and geographers.

There are several indications that Hipparchus knew spherical trigonometry, but the first surviving text of it is that of Menelaus of Alexandria in the 1st century, who on that basis is now commonly credited with its discovery. (Previous to the finding of the proofs of Menelaus a century ago, Ptolemy was credited with the invention of spherical trigonometry.) Ptolemy later used spherical trigonometry to compute things like the rising and setting points of the ecliptic, or to take account of the lunar parallax. Hipparchus may have used a globe for these tasks, reading values off coordinate grids drawn on it, or he may have made approximations from planar geometry, or perhaps used arithmetical approximations developed by the Chaldeans. He might have used spherical trigonometry.

Aubrey Diller has shown that the clima calculations which Strabo preserved from Hipparchus were performed by spherical trigonometry with the sole accurate obliquity known to have been used by ancient astronomers, 23°40′. All thirteen clima figures agree with Diller’s proposal.Dennis Rawlins, , DIO 5 (2009); Shcheglov D.A. (2002-2007): , Orbis Terrarum 9 (2003–2007), 177–180. Further confirming his contention is the finding that the big errors in Hipparchus’s longitude of Regulus and both longitudes of Spica agree to a few minutes in all three instances with a theory that he took the wrong sign for his correction for parallax when using eclipses for determining stars’ positions.Dennis Rawlins, , DIO 16 (2009).