George Westinghouse

51
George Westinghouse bigraphy, stories - American businessman

George Westinghouse : biography

October 6, 1846 – March 12, 1914

George Westinghouse, Jr (October 6, 1846 – March 12, 1914) was an American entrepreneur and engineer who invented the railway air brake and was a pioneer of the electrical industry. Westinghouse was one of Thomas Edison’s main rivals in the early implementation of the American electricity system. Westinghouse’s system ultimately prevailed over Edison’s insistence on direct current. In 1911, Westinghouse received the AIEE’s Edison Medal "For meritorious achievement in connection with the development of the alternating current system."

Electricity and the "War of Currents"

In 1879 Edison invented an improved incandescent light bulb, and realized the need for an electrical distribution system to provide power for lighting. On September 4, 1882, Edison switched on the world’s first electrical power distribution system, providing 110 volts direct current (DC) to 59 customers in lower Manhattan, around his Pearl Street Station.

Westinghouse’s interests in gas distribution and telephone switching logically led him to become interested in electrical power distribution. He investigated Edison’s scheme, but decided that it was too inefficient to be scaled up to a large size. Edison’s power network was based on low-voltage DC, which meant large currents and serious power losses. An AC power system allowed voltages to be "stepped up" by a transformer for distribution, reducing power losses, and then "stepped down" by a transformer for consumer use.

A power transformer developed by Lucien Gaulard of France and John Dixon Gibbs of England was demonstrated in London in 1881, and attracted the interest of Westinghouse. Transformers were not new, but the Gaulard-Gibbs design was one of the first that could handle large amounts of power and was easily manufactured. In 1885 Westinghouse imported a number of Gaulard-Gibbs transformers and a Siemens AC generator to begin experimenting with AC networks in Pittsburgh.

Assisted by William Stanley, and Franklin Leonard Pope, Westinghouse worked to refine the transformer design and build a practical AC power network. In 1886 Westinghouse and Stanley installed the first multiple-voltage AC power system in Great Barrington, Massachusetts. The network was driven by a hydropower generator that produced 500 volts AC. The voltage was stepped up to 3,000 volts for transmission, and then stepped back down to 100 volts to power electric lights. That same year, Westinghouse formed the "Westinghouse Electric & Manufacturing Company", which was renamed the "Westinghouse Electric Corporation" in 1889.

Thirty more AC lighting systems were installed within a year, but the scheme was limited by the lack of an effective metering system and an AC electric motor. In April 1888, Westinghouse and his engineer Oliver B. Shallenberger developed an induction meter that used a rotating magnetic field for measuring alternating current (ampere-hours). The same basic meter technology remains in use today. That same year the inventor Nikola Tesla demonstrated a polyphase brushless AC induction motor also based on a rotating magnetic field. In July 1888, George Westinghouse licensed Nikola Tesla’s US patents for the induction motor and transformer designs. Westinghouse also purchased a US patent option on a possible prior design for an induction motor from the Italian physicist and electrical engineer Galileo Ferraris in an attempt to avoid the rather substantial amount of money being asked to secure the Tesla license, but concluded it was too risky not to obtain what may have been a priority Tesla US patent.

Westinghouse’s promotion of AC power distribution led him into a bitter confrontation with Edison and his DC power system. The feud became known as the "War of Currents". Edison claimed that high voltage systems were inherently dangerous. Westinghouse replied that the risks could be managed and were outweighed by the benefits. Edison tried to have legislation enacted in several states to limit power transmission voltages to 800 volts, but failed.