Antoine Lavoisier


Antoine Lavoisier : biography

26 August 1743 – 8 May 1794
  • Method of chymical nomenclature: proposed by Messrs. De Moreau, Lavoisier, Bertholet, and De Fourcroy (1788)
  • Elements of Chemistry, in a New Systematic Order, Containing All the Modern Discoveries (Edinburgh: William Creech, 1790; New York: Dover, 1965) translation by Robert Kerr of Traité élémentaire de chimie. ISBN 978-0486646244 (Dover).
    • 1802 edition: ,
    • from 1793 edition
    • from Othmer Library of Chemical History
    • (from Collected Works) at Othmer Library of Chemical History


Early life and education

Antoine-Laurent Lavoisier was born to a wealthy family in Paris on August 26, 1743. The son of an attorney at the Parlement of Paris, he inherited a large fortune at the age of five with the passing of his mother. Lavoisier began his schooling at the Collège des Quatre-Nations (known as the Collège Mazarin) in Paris in 1754 at the age of 11. In his last two years (1760-1761) at the college his scientific interests were aroused, and he studied chemistry, botany, astronomy, and mathematics. In the philosophy class he came under the tutelage of Abbé Nicolas Louis de Lacaille, a distinguished mathematician and observational astronomer who imbued the young Lavoisier with an interest in meteorological observation, an enthusiasm which never left him. Lavoisier entered the school of law, where he received a bachelor’s degree in 1763 and a licentiate in 1764. Lavoisier received a law degree and was admitted to the bar, but never practiced as a lawyer. However, he continued his scientific education in his spare time.

Early scientific work

Lavoisier’s education was filled with the ideals of the French Enlightenment of the time, and he was fascinated by Pierre Macquer’s dictionary of chemistry. He attended lectures in the natural sciences. Lavoisier’s devotion and passion for chemistry were largely influenced by Étienne Condillac, a prominent French scholar of the 18th century. His first chemical publication appeared in 1764. From 1763 to 1767, he studied geology under Jean-Étienne Guettard. In collaboration with Guettard, Lavoisier worked on a geological survey of Alsace-Lorraine in June 1767. In 1764 he read his first paper to the French Academy of Sciences, France’s most elite scientific society, on the chemical and physical properties of gypsum (hydrated calcium sulfate), and in 1766 he was awarded a gold medal by the King for an essay on the problems of urban street lighting. In 1768 Lavoisier received a provisional appointment to the Academy of Sciences. In 1769, he worked on the first geological map of France.

Ferme Générale and Marriage

At age 26, around the time he was elected to the Academy of Sciences, Lavoisier bought a share in the Ferme Générale, a tax farming financial company which advanced the estimated tax revenue to the royal government in return for the right to collect the taxes. Lavoisier attempted to introduce reforms in the French monetary and taxation system to help the peasants. While in government work, he helped develop the metric system to secure uniformity of weights and measures throughout France. Lavoisier consolidated his social and economic position when, in 1771 at age 28, he married Marie-Anne Pierrette Paulze, the 14-year-old daughter of a senior member of the Ferme générale. She was to play an important part in Lavoisier’s scientific career—notably, she translated English documents for him, including Richard Kirwan’s Essay on Phlogiston and Joseph Priestley’s research. In addition, she assisted him in the laboratory and created many sketches and carved engravings of the laboratory instruments used by Lavoisier and his colleagues for their scientific works.

Madame Lavoisier edited and published Antoine’s memoirs (whether any English translations of those memoirs have survived is unknown as of today) and hosted parties at which eminent scientists discussed ideas and problems related to chemistry. For 3 years following his entry into the Ferme générale, Lavoisier’s scientific activity diminished somewhat, for much of his time was taken up with official Ferme générale business. He did, however, present one important memoir to the Academy of Sciences during this period, on the supposed conversion of water into earth by evaporation. By a very precise quantitative experiment Lavoisier showed that the "earthy" sediment produced after long-continued reflux heating of water in a glass vessel was not due to a conversion of the water into earth but rather to the gradual disintegration of the inside of the glass vessel produced by the boiling water.