André-Marie Ampère

26

André-Marie Ampère : biography

20 January 1775 – 10 June 1836

Ampère engaged in a diverse array of scientific inquiries during the years leading up to his election to the academy—writing papers and engaging in topics from mathematics and philosophy to chemistry and astronomy. Such breadth was customary among the leading scientific intellectuals of the day. Ampère claimed that "at eighteen years he found three culminating points in his life, his First Communion, the reading of Antoine Leonard Thomas’s "Eulogy of Descartes", and the Taking of the Bastille. On the day of his wife’s death he wrote two verses from the Psalms, and the prayer, ‘O Lord, God of Mercy, unite me in Heaven with those whom you have permitted me to love on earth.’ Serious doubts harassed him at times, and made him very unhappy. Then he would take refuge in the reading of the Bible and the Fathers of the Church."

For a time he took into his family the young student Antoine-Frédéric Ozanam (1813–1853), one of the founders of the Conference of Charity, later known as the Society of Saint Vincent de Paul. Through Ampère, Ozanam had contact with leaders of the neo-Catholic movement, such as François-René de Chateaubriand, Jean-Baptiste Henri Lacordaire, and Charles Forbes René de Montalembert. Ozanam was beatified by Pope John Paul II in 1997.

Work in electromagnetism

In September 1820, Ampère’s friend and eventual eulogist François Arago showed the members of the French Academy of Sciences the surprising discovery of Danish physicist Hans Christian Ørsted that a magnetic needle is deflected by an adjacent electric current. Ampère began developing a mathematical and physical theory to understand the relationship between electricity and magnetism. Furthering Ørsted’s experimental work, Ampère showed that two parallel wires carrying electric currents attract or repel each other, depending on whether the currents flow in the same or opposite directions, respectively – this laid the foundation of electrodynamics. He also applied mathematics in generalizing physical laws from these experimental results. The most important of these was the principle that came to be called Ampère’s law, which states that the mutual action of two lengths of current-carrying wire is proportional to their lengths and to the intensities of their currents. Ampère also applied this same principle to magnetism, showing the harmony between his law and French physicist Charles Augustin de Coulomb’s law of magnetic action. Ampère’s devotion to, and skill with, experimental techniques anchored his science within the emerging fields of experimental physics.

Ampère also provided a physical understanding of the electromagnetic relationship, theorizing the existence of an “electrodynamic molecule” (the forerunner of the idea of the electron) that served as the component element of both electricity and magnetism. Using this physical explanation of electromagnetic motion, Ampère developed a physical account of electromagnetic phenomena that was both empirically demonstrable and mathematically predictive. In 1827 Ampère published his magnum opus, Mémoire sur la théorie mathématique des phénomènes électrodynamiques uniquement déduite de l’experience (Memoir on the Mathematical Theory of Electrodynamic Phenomena, Uniquely Deduced from Experience), the work that coined the name of his new science, electrodynamics, and became known ever after as its founding treatise. In 1827 he was elected a Foreign Member of the Royal Society and in 1828, a foreign member of the Royal Swedish Academy of Science. In recognition of his contribution to the creation of modern electrical science, an international convention signed in 1881 established the ampere as a standard unit of electrical measurement, along with the coulomb, volt, ohm, and watt, which are named, respectively, after Ampère’s contemporaries Charles-Augustin de Coulomb of France, Alessandro Volta of Italy, Georg Ohm of Germany, and James Watt of Scotland.

Trivia

Andre Marie Ampere’s father was guillotined during the French Revolution and his wife died shortly after their marriage. On his deathbed in 1836, he ordered that an inscription be placed upon his tombstone: Tandem Felix (Happy at Last).

Writings

  • Considerations sur la théorie mathématique du jeu, Perisse, Lyon Paris 1802, im Internet-Archiv
  • Partial translation of some of Ampère’s writing is in:
  • Magie, W.M. (1963). A Source Book in Physics. Harvard: Cambridge MA. pp. 446-460.