Nevil Maskelyne bigraphy, stories - Fifth Astronomer Royal, 1765 – 1811

Nevil Maskelyne : biography

6 October 1732 - 9 February 1811

The Reverend Dr Nevil Maskelyne FRS (6 October 1732 – 20 July 1811) was the fifth English Astronomer Royal. He held the office from 1765 to 1811.

Maskelyne in literature and the arts

  • Maskelyne features prominently in Dava Sobel's 1995 book, Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time, as well as the television serial based on the book, where he is portrayed by Samuel West.
  • Maskelyne is a supporting character in Mason & Dixon by Thomas Pynchon.
  • Maskelyne is portrayed as "Dr. Vickery" in Kate Grenville's semi-historical novel The Lieutenant.

Biography

Maskelyne was born in London, the third son of Edmund Maskelyne of Purton, Wiltshire. Maskelyne's father died when he was 12, leaving the family in reduced circumstances. Maskelyne attended Westminster School and was still a pupil there when his mother died in 1748. His interest in astronomy had begun while at Westminster School, shortly after the eclipse of 25 July 1748.

Maskelyne entered St Catharine's College, Cambridge in 1749, graduating as seventh wrangler in 1754. Ordained as a minister in 1755, he became a fellow of Trinity College, Cambridge in 1756.

About 1785 Maskelyne married Sophia Rose of Cotterstock, Northamptonshire. Their only child, Margaret (1786–1858), was the mother of Mervyn Herbert Nevil Story-Maskelyne (1823–1911) professor of mineralogy at Oxford (1856–95). Maskelyne's sister, Margaret, married Robert Clive.

Nevil Maskelyne is buried in the churchyard of St Mary the Virgin, the parish church of the village of Purton, Wiltshire, England.Maskelyne's grave can be seen by going through the church gates and veering to the right, against the right outside wall of the church.

Career

Measurement of longitude

In 1758 Maskelyne was admitted to the Royal Society, which in 1761 despatched him to the island of St. Helena to observe the transit of Venus. This was an important observation since accurate measurements would allow the accurate calculation of Earth's distance from the Sun, which would in turn allow the scale of the solar system to be calculated.

Bad weather prevented any useful observations; however, Maskelyne used his journey to develop a method of determining longitude using the position of the moon, which became known as the lunar distance method. He returned to England, resuming his position as curate at Chipping Barnet in 1761, and began work on a book, publishing the lunar distance method of longitude calculation in 1763 in The British Mariner's Guide, which included the suggestion that to facilitate the finding of longitude at sea, lunar distances should be calculated beforehand for each year and published in a form accessible to navigators. This proposal, the germ of the Nautical Almanac, was approved by the government, and under the care of Maskelyne the Nautical Almanac for 1767 was published in 1766. He further induced the government to print his observations annually.

Despite a possible conflict of interests, Maskelyne being an advocate of the lunar distance method of determining longitude, the Board of Longitude sent him to Barbados in 1763 to calculate the longitude of the capital, Bridgetown by observation of Jupiter's satellites, and also to test his lunar distance method and compare its accuracy to John Harrison's chronometer, the No. 4 timekeeper. Even after a successful trial in Barbados in 1764 observed by Maskelyne, Harrison was required to produce detailed drawings and build two more chronometers, one of which was eventually tested by King George III himself.

The results of the voyage were made public at a meeting of the Board of Longitude in early 1765, where it was disclosed that Harrison's chronometer had produced Bridgetown's longitude with an error of less than ten miles after a sea voyage of more than 5,000 miles. Maskelyne's method on the other hand showed an error of 30 miles. However, four of the naval officers present stated that their calculations had been performed to Maskelyne's instructions and were therefore subject to their inexperience. Also, since the lunar distance method relied on tables that only Maskelyne was capable of calculating, the method was not yet in a position to take the prize.

Living octopus

Living octopus

In countries which are located near sea coasts, sea food is an important part of national cuisine