Luis Walter Alvarez

102
Luis Walter Alvarez bigraphy, stories - American physicist

Luis Walter Alvarez : biography

June 13, 1911 – September 1, 1988

Luis W. Alvarez (June 13, 1911 – September 1, 1988) was an American experimental physicist and inventor, who was awarded the Nobel Prize in Physics in 1968. The American Journal of Physics commented, "Luis Alvarez (1911–1988) was one of the most brilliant and productive experimental physicists of the twentieth century."

After receiving his PhD from the University of Chicago in 1936, Alvarez went to work for Ernest Lawrence at the Radiation Laboratory at the University of California, Berkeley. Alvarez devised a set of experiments to observe K-electron capture in radioactive nuclei, predicted by the beta decay theory but never observed. He produced using the cyclotron and measured its lifetime. In collaboration with Felix Bloch, he measured the magnetic moment of the neutron.

In 1940 Alvarez joined the MIT Radiation Laboratory, where he contributed to a number of World War II radar projects, from early improvements to Identification Friend or Foe (IFF) radar beacons, now called transponders, to a system known as VIXEN for preventing enemy submarines from realizing that they had been found by the new airborne microwave radars. The radar system for which Alvarez is best known and which has played a major role in aviation, most particularly in the post war Berlin airlift, was Ground Controlled Approach (GCA). Alvarez spent a few months at the University of Chicago working on nuclear reactors for Enrico Fermi before coming to Los Alamos to work for Robert Oppenheimer on the Manhattan project. Alvarez worked on the design of explosive lenses, and the development of exploding-bridgewire detonators. As a member of Project Alberta, he observed the Trinity nuclear test from a B-29 Superfortress, and later the bombing of Hiroshima from the B-29 The Great Artiste.

After the war Alvarez was involved in the design of a liquid hydrogen bubble chamber that allowed his team to take millions of photographs of particle interactions, develop complex computer systems to measure and analyze these interactions, and discover entire families of new particles and resonance states. This work resulted in his being awarded the Nobel Prize in 1968. He was involved in a project to X-Ray the Egyptian pyramids to search for unknown chambers. He analyzed film footage of the Kennedy assassination, and, with his son geologist Walter Alvarez, proposed the Alvarez hypothesis, namely that the extinction event that wiped out the dinosaurs was the result of an asteroid impact.

Later life and career

Bubble chamber

Returning to the University of California as a full professor, Alvarez had many ideas about how to use his wartime radar knowledge to improve particle accelerators. Though some of these were to bear fruit, the "big idea" of this time would come from Edwin McMillan with his concept of phase stability which led to the synchrocyclotron. Refining and extending this concept, the Lawrence team would build the world’s then-largest proton accelerator, the Bevatron, which began operating in 1954. Though the Bevatron could produce copious amounts of interesting particles, particularly in secondary collisions, these complex interactions were hard to detect and analyze at the time.

Seizing upon a new development to visualize particle tracks, created by Donald Glaser and known as a bubble chamber, Alvarez realized the device was just what was needed, if only it could be made to function with liquid hydrogen. Hydrogen nuclei, which are protons, made the simplest and most desirable target for interactions with the particles produced by the Bevatron. He began a development program to build a series of small chambers, and championed the device to Ernest Lawrence.

The Glaser device was a small glass cylinder () filled with ether. By suddenly reducing the pressure in the device, the liquid could be placed into a temporary superheated state, which would boil along the disturbed track of a particle passing through. Glaser was able to maintain the superheated state for a few seconds before spontaneous boiling took place. The Alvarez team built chambers of 1.5 in, 2.5 in, 4 in, 10 in, and 15 in using liquid hydrogen, and constructed of metal with glass windows, so that the tracks could be photographed. The chamber could be cycled in synchronization with the accelerator beam, a picture could be taken, and the chamber recompressed in time for the next beam cycle.