John D’Alton

570

John Dalton : biography

06 September 1766 – 27 July 1844

Dalton proceeded to print his first published table of relative atomic weights. Six elements appear in this table, namely hydrogen, oxygen, nitrogen, carbon, sulfur, and phosphorus, with the atom of hydrogen conventionally assumed to weigh 1. Dalton provided no indication in this first paper how he had arrived at these numbers. However, in his laboratory notebook under the date 6 September 1803Laboratory notebook in ibid., p. 248 there appears a list in which he sets out the relative weights of the atoms of a number of elements, derived from analysis of water, ammonia, carbon dioxide, etc. by chemists of the time.

It appears, then, that confronted with the problem of calculating the relative diameter of the atoms of which, he was convinced, all gases were made, he used the results of chemical analysis. Assisted by the assumption that combination always takes place in the simplest possible way, he thus arrived at the idea that chemical combination takes place between particles of different weights, and it was this which differentiated his theory from the historic speculations of the Greeks, such as Democritus and Lucretius.

The extension of this idea to substances in general necessarily led him to the law of multiple proportions, and the comparison with experiment brilliantly confirmed his deduction. It may be noted that in a paper on the proportion of the gases or elastic fluids constituting the atmosphere, read by him in November 1802, the law of multiple proportions appears to be anticipated in the words: "The elements of oxygen may combine with a certain portion of nitrous gas or with twice that portion, but with no intermediate quantity", but there is reason to suspect that this sentence may have been added some time after the reading of the paper, which was not published until 1805.

Compounds were listed as binary, ternary, quaternary, etc. (molecules composed of two, three, four, etc. atoms) in the New System of Chemical Philosophy depending on the number of atoms a compound had in its simplest, empirical form.

He hypothesized the structure of compounds can be represented in whole number ratios. So, one atom of element X combining with one atom of element Y is a binary compound. Furthermore, one atom of element X combining with two elements of Y or vice versa, is a ternary compound. Many of the first compounds listed in the New System of Chemical Philosophy correspond to modern views, although many others do not. Various atoms and [[molecules as depicted in John Dalton’s A New System of Chemical Philosophy (1808).]] Dalton used his own symbols to visually represent the atomic structure of compounds. These have made it in New System of Chemical Philosophy where Dalton listed a number of elements, and common compounds.

Five main points of Dalton’s atomic theory

  1. Elements are made of extremely small particles called atoms.
  2. Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in size, mass, and other properties.
  3. Atoms cannot be subdivided, created, or destroyed.
  4. Atoms of different elements combine in simple whole-number ratios to form chemical compounds.
  5. In chemical reactions, atoms are combined, separated, or rearranged.

Dalton proposed an additional "rule of greatest simplicity" that created controversy, since it could not be independently confirmed.

When atoms combine in only one ratio, "..it must be presumed to be a binary one, unless some cause appear to the contrary".

This was merely an assumption, derived from faith in the simplicity of nature. No evidence was then available to scientists to deduce how many atoms of each element combine to form compound molecules. But this or some other such rule was absolutely necessary to any incipient theory, since one needed an assumed molecular formula in order to calculate relative atomic weights. In any case, Dalton’s "rule of greatest simplicity" caused him to assume that the formula for water was OH and ammonia was NH, quite different from our modern understanding.