Ernest Rutherford

66

Ernest Rutherford : biography

30 August 1871 – 19 October 1937

In 1903, Rutherford considered a type of radiation discovered (but not named) by French chemist Paul Villard in 1900, as an emission from radium, and realised that this observation must represent something different from his own alpha and beta rays, due to its very much greater penetrating power. Rutherford therefore gave this third type of radiation the name of gamma ray. All three of Rutherford’s terms are in standard use today – other types of radioactive decay have since been discovered, but Rutherford’s three types are among the most common.

In Manchester, he continued to work with alpha radiation. In conjunction with Hans Geiger, he developed zinc sulfide scintillation screens and ionisation chambers to count alphas. By dividing the total charge they produced by the number counted, Rutherford decided that the charge on the alpha was two. In late 1907, Ernest Rutherford and Thomas Royds allowed alphas to penetrate a very thin window into an evacuated tube. As they sparked the tube into discharge, the spectrum obtained from it changed, as the alphas accumulated in the tube. Eventually, the clear spectrum of helium gas appeared, proving that alphas were at least ionised helium atoms, and probably helium nuclei.

Rutherford and the Gold Foil Experiment

Rutherford remains the only science Nobel Prize winner to have performed his most famous work after receiving the prize. cite: http://www.encyclopediabritanica.com/nucleus (atom) not a proper link or website–> Along with Hans Geiger and Ernest Marsden in 1909, he carried out the Geiger–Marsden experiment, which demonstrated the nuclear nature of atoms. Rutherford was inspired to ask Geiger and Marsden in this experiment to look for alpha particles with very high deflection angles, of a type not expected from any theory of matter at that time. Such deflections, though rare, were found, and proved to be a smooth but high-order function of the deflection angle. It was Rutherford’s interpretation of this data that led him to formulate the Rutherford model of the atom in 1911 – that a very small charged nucleus, containing much of the atom’s mass, was orbited by low-mass electrons.

Before leaving Manchester in 1919 to take over the Cavendish laboratory in Cambridge, Rutherford became, in 1919, the first person to deliberately transmute one element into another. In this experiment, he had discovered peculiar radiations when alphas were projected into air, and narrowed the effect down to the nitrogen, not the oxygen in the air. Using pure nitrogen, Rutherford used alpha radiation to convert nitrogen into oxygen through the nuclear reaction 14N + α → 17O + proton. The proton was not then known. In the products of this reaction Rutherford simply identified hydrogen nuclei, by their similarity to the particle radiation from earlier experiments in which he had bombarded hydrogen gas with alpha particles to knock hydrogen nuclei out of hydrogen atoms. This result showed Rutherford that hydrogen nuclei were a part of nitrogen nuclei (and by inference, probably other nuclei as well). Such a construction had been suspected for many years on the basis of atomic weights which were whole numbers of that of hydrogen; see Prout’s hypothesis. Hydrogen was known to be the lightest element, and its nuclei presumably the lightest nuclei. Now, because of all these considerations, Rutherford decided that a hydrogen nucleus was possibly a fundamental building block of all nuclei, and also possibly a new fundamental particle as well, since nothing was known from the nucleus that was lighter. Thus, Rutherford postulated hydrogen nuclei to be a new particle in 1920, which he dubbed the proton.

In 1921, while working with Niels Bohr (who postulated that electrons moved in specific orbits), Rutherford theorized about the existence of neutrons, (which he had christened in his 1920 Bakerian Lecture), which could somehow compensate for the repelling effect of the positive charges of protons by causing an attractive nuclear force and thus keep the nuclei from flying apart from the repulsion between protons. The only alternative to neutrons was the existence of "nuclear electrons" which would counteract some of the proton charges in the nucleus, since by then it was known that nuclei had about twice the mass that could be accounted for if they were simply assembled from hydrogen nuclei (protons). But how these nuclear electrons could be trapped in the nucleus, was a mystery.