David Hestenes

67
David Hestenes bigraphy, stories - Physicists

David Hestenes : biography

May 21, 1933 –

David Orlin Hestenes, Ph.D. (born May 21, 1933) is a theoretical physicist and science educator. He is best known as chief architect of geometric algebra as a unified language for mathematics and physics,D. Hestenes: A Unified Language for Mathematics and Physics. In: J.S.R. Chisholm/A.K. Common (eds.): Clifford Algebras and their Applications in Mathematical Physics (Reidel: Dordrecht/Boston, 1986), p. 1–23. and as founder of Modelling Instruction, a research-based program to reform K–12 Science, Technology, Engineering, and Mathematics (STEM) education.Home page on Modeling Instruction http://modeling.asu.edu/

For more than 30 years, he was employed in the Department of Physics and Astronomy of Arizona State University (ASU), where he retired with the rank of Research Professor and is now emeritus.

Life and career

Education and doctorate degree

David Orlin Hestenes (eldest son of mathematician Magnus Hestenes) was born 1933 in Chicago Illinois. Beginning college as a pre-medical major at UCLA from 1950 to 1952, he graduated from Pacific Lutheran University in 1954 with degrees in philosophy and speech. After serving in the U.S. Army from 1954 to 1956, he entered UCLA as an unclassified graduate student, completed a physics M.A. in 1958 and won a University Fellowship. His mentor at UCLA was the physicist Robert Finkelstein, who was working on unified field theories at that time.D. Hestenes:. In: J.S.R. Chisholm, A.K. Commons (eds.): Clifford Algebras and their Interpretations in Mathematical Physics, Reidel, 1986, pp. 321–346 A serendipitous encounter with lecture notes by mathematician Marcel Riesz inspired Hestenes to study a geometric interpretation of Dirac matrices. He obtained his Ph.D. from UCLA with a thesis entitled Geometric Calculus and Elementary Particles.D. Hestenes: ,–~~~~ University of California, Los Angeles Shortly thereafter he recognized that the Dirac algebras and Pauli matrices could be unified in matrix-free form by a device later called a spacetime split.D. Hestenes, Spacetime Physics with Geometric Algebra, American Journal of Physics 71: 691–714 (2003). Then he revised his thesis and published it in 1966 as a book, Space Time Algebra,D. Hestenes, Space-Time Algebra (Gordon & Breach: New York, 1966). now referred to as spacetime algebra (STA). This was the first major step in developing a unified, coordinate-free geometric algebra and calculus for all of physics.

Postdoctorate research and career

From 1964 to 1966, Hestenes was an NSF Postdoctoral Fellow at Princeton with John Archibald Wheeler. In 1966 he joined the physics department at Arizona State University, rising to full professor in 1976 and retiring in 2000 to Emeritus Professor of Physics.

In 1980 and 1981 as a NASA Faculty Fellow and in 1983 as a NASA Consultant he worked at Jet Propulsion Laboratory on orbital mechanics and attitude control, where he applied geometric algebra in development of new mathematical techniques published in a textbook/monograph New Foundations for Classical Mechanics.D. Hestenes, New Foundations for Classical Mechanics (Kluwer: Dordrecht/Boston, 1986), Second Edition (1999).

In 1983 he joined with entrepreneur Robert Hecht-Nielsen and psychologist Peter Richard Killeen in conducting the first ever conference devoted exclusively to neural network modeling of the brain. Hestenes followed this in 1987 with appointment as the first Visiting Scholar in the Department of Cognitive and Neural Systems (Boston University) and a period of neuroscience research.D. Hestenes, How the Brain Works: the next great scientific revolution. In C.R. Smith and G.J. Erickson (eds.), Maximum Entropy and Bayesian Spectral Analysis and Estimation Problems (Reidel: Dordrecht/Boston, 1987). p. 173–205.D. Hestenes, Neural Networks 7: 65–77 (1994).D. Hestenes, Neural Networks 7: 79–88 (1994).D. Hestenes, Modulatory Mechanisms in Mental Disorders. In Neural Networks in Psychopathology, ed. D.J. Stein & J. Ludik (Cambridge University Press: Cambridge, 1998). pp. 132–164.