Antoine Lavoisier

85

Antoine Lavoisier : biography

26 August 1743 – 8 May 1794

Lavoisier also contributed to early ideas on composition and chemical changes by stating the radical theory, believing that radicals, which function as a single group in a chemical process, combine with oxygen in reactions. He also introduced the possibility of allotropy in chemical elements when he discovered that diamond is a crystalline form of carbon.

However, much to his professional detriment, Lavoisier discovered no new substances, devised no really novel apparatus, and worked out no improved methods of preparation. He was essentially a theorist, and his great merit lay in his capacity to take over experimental work that others had carried out—without always adequately recognizing their claims—and by a rigorous logical procedure, reinforced his own quantitative experiments, expounding the true explanation of the results. He completed the work of Black, Priestley and Cavendish, and gave a correct explanation of their experiments.

Overall, his contributions are considered the most important in advancing chemistry to the level reached in physics and mathematics during the 18th century.Charles C. Gillespie, Foreword to Lavoisier by Jean-Pierre Poirier, University of Pennsylvania Press, English Edition, 1996. Lavosier’s work was recognized as an International Historic Chemical Landmark by the American Chemical Society, Académie des sciences de L’institut de France and the Société Chimique de France in 1999.

Selected writings

  • (Paris: Chez Durand, Didot, Esprit, 1774). ()
  • L’art de fabriquer le salin et la potasse, publié par ordre du Roi, par les régisseurs-généraux des Poudres & Salpêtres (Paris, 1779).
  • Instruction sur les moyens de suppléer à la disette des fourrages, et d’augmenter la subsistence des bestiaux, Supplément à l’instruction sur les moyens de pourvoir à la disette des fourrages, publiée par ordre du Roi le 31 mai 1785 (Instruction on the means of compensating for the food shortage with fodder, and of increasing the subsistence of cattle, Supplement to the instruction on the means of providing for the food shortage with fodder, published by order of King on 31 May 1785).
  • (with Guyton de Morveau, Claude-Louis Berthollet, Antoine Fourcroy) (Paris: Chez Cuchet, 1787)
  • (with Fourcroy, Morveau, Cadet, Baumé, d’Arcet, and Sage) (Paris: Chez Cuchet, 1789)
  • (Paris: Chez Cuchet, 1789; Bruxelles: Cultures et Civilisations, 1965) (lit. Elementary Treatise on Chemistry, presented in a new order and alongside modern discoveries) also
  • (with Pierre-Simon Laplace) "," Mémoires de l’Académie des sciences (1780), pp. 355–408.
  • (1792)
  • Mémoires de physique et de chimie (1805: posthumous)

In translation

  • (London: for Joseph Johnson, 1776; London: Frank Cass and Company Ltd., 1970) translation by Thomas Henry of Opuscules physiques et chimiques
  • The Art of Manufacturing Alkaline Salts and Potashes, Published by Order of His Most Christian Majesty, and approved by the Royal Academy of Sciences (1784) trans. by Charles WilliamosSee Denis I. Duveen and Herbert S. Klickstein, "," The William and Mary Quarterly, Third Series 13:4 (Oct. 1956), 493–498. of L’art de fabriquer le salin et la potasse
  • (with Pierre-Simon Laplace) Memoir on Heat:Read to the Royal Academy of Sciences, 28 June 1783, by Messrs. Lavoisier & De La Place of the same Academy. (New York : Neale Watson Academic Publications, 1982) trans. by Henry Guerlac of Mémoire sur la chaleur
  • , trans. Thomas Henry (London: Warrington, 1783) collects these essays:
  1. "Experiments on the Respiration of Animals, and on the Changes effected on the Air in passing through their Lungs." (Read to the Académie des Sciences, 3 May 1777)
  2. "On the Combustion of Candles in Atmospheric Air and in Dephlogistated Air." (Communicated to the Académie des Sciences, 1777)
  3. "On the Combustion of Kunckel’s Phosphorus."
  4. "On the Existence of Air in the Nitrous Acid, and on the Means of decomposing and recomposing that Acid."
  5. "On the Solution of Mercury in Vitriolic Acid."
  6. "Experiments on the Combustion of Alum with Phlogisic Substances, and on the Changes effected on Air in which the Pyrophorus was burned."
  7. "On the Vitriolisation of Martial Pyrites."
  8. "General Considerations on the Nature of Acids, and on the Principles of which they are composed."
  9. "On the Combination of the Matter of Fire with Evaporable Fluids; and on the Formation of Elastic Aëriform Fluids."